Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

f(TRUE, x, y, z) → f(&&(>@z(x, y), >@z(x, z)), x, y, +@z(z, 1@z))
f(TRUE, x, y, z) → f(&&(>@z(x, y), >@z(x, z)), x, +@z(y, 1@z), z)

The set Q consists of the following terms:

f(TRUE, x0, x1, x2)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → AND(greater_int(x, y), greater_int(x, z))
F(true, x, y, z) → GREATER_INT(x, y)
F(true, x, y, z) → GREATER_INT(x, z)
F(true, x, y, z) → PLUS_INT(pos(s(0)), z)
F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → PLUS_INT(pos(s(0)), y)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → AND(greater_int(x, y), greater_int(x, z))
F(true, x, y, z) → GREATER_INT(x, y)
F(true, x, y, z) → GREATER_INT(x, z)
F(true, x, y, z) → PLUS_INT(pos(s(0)), z)
F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → PLUS_INT(pos(s(0)), y)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 9 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))

The TRS R consists of the following rules:

f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
f(true, x, y, z) → f(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
Positions in right side of the pair: Pair: F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z, x_removed) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(x_removed, y), z, x_removed)
F(true, x, y, z, x_removed) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(x_removed, z), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z)
Positions in right side of the pair: Pair: F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z, x_removed) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(x_removed, y), z, x_removed)
F(true, x, y, z, x_removed) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(x_removed, z), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, plus_int(pos(s(0)), y), z) at position [0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(s(x1))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(s(x0))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(s(x0))), y2)
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(s(x0))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), neg(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), neg(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), neg(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
QDP
                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), plus_int(pos(s(0)), pos(s(x0))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
QDP
                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), plus_int(pos(s(0)), pos(s(x0))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
QDP
                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), plus_int(pos(s(0)), pos(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
QDP
                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), neg(0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
QDP
                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), plus_int(pos(s(0)), pos(s(x1))), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
QDP
                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), s(x1)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
QDP
                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), s(x1)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
QDP
                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), s(x0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
QDP
                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), s(x0)), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
QDP
                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(s(0), 0), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
QDP
                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), 0)), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
QDP
                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), minus_nat(s(0), 0), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
QDP
                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), 0)), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
QDP
                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), s(x1))), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), minus_nat(s(0), 0), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(plus_nat(s(0), s(x0))), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), 0)), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(plus_nat(s(0), s(x0))), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(plus_nat(s(0), 0)), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(s(0), 0), y2) at position [2] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2)
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(plus_nat(s(0), s(x1))), y2) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, 0))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, 0))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, s(x1)))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(plus_nat(0, s(x0)))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, 0))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(plus_nat(0, s(x0)))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(plus_nat(0, 0))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(plus_nat(0, s(x1)))), y2) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, x, y, z) → F(and(greater_int(x, y), greater_int(x, z)), x, y, plus_int(pos(s(0)), z)) at position [0] we obtained the following new rules [LPAR04]:

F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
QDP
                                                                                                                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(s(x0)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), neg(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, minus_nat(s(0), 0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                                  ↳ Narrowing
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, minus_nat(s(0), 0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(0)) at position [0] we obtained the following new rules [LPAR04]:

F(true, pos(0), pos(s(x0)), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(s(x0))), pos(0))
F(true, pos(0), pos(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(0)), pos(0))
F(true, pos(0), neg(s(x0)), pos(0)) → F(and(true, false), pos(0), plus_int(pos(s(0)), neg(s(x0))), pos(0))
F(true, pos(0), neg(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), neg(0)), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Narrowing
QDP
                                                                                                                                                                                                                      ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, minus_nat(s(0), 0))
F(true, pos(0), pos(s(x0)), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(s(x0))), pos(0))
F(true, pos(0), pos(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(0)), pos(0))
F(true, pos(0), neg(s(x0)), pos(0)) → F(and(true, false), pos(0), plus_int(pos(s(0)), neg(s(x0))), pos(0))
F(true, pos(0), neg(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), neg(0)), pos(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Narrowing
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ DependencyGraphProof
QDP
                                                                                                                                                                                                                          ↳ Narrowing
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, minus_nat(s(0), 0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), pos(s(x0)), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(s(x0))), pos(0))
F(true, pos(0), pos(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(0)), pos(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), plus_int(pos(s(0)), y1), neg(s(x0))) at position [0] we obtained the following new rules [LPAR04]:

F(true, pos(0), neg(0), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), neg(0)), neg(s(y1)))
F(true, pos(0), pos(0), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), pos(0)), neg(s(y1)))
F(true, pos(0), neg(s(x0)), neg(s(y1))) → F(and(true, true), pos(0), plus_int(pos(s(0)), neg(s(x0))), neg(s(y1)))
F(true, pos(0), pos(s(x0)), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), pos(s(x0))), neg(s(y1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Narrowing
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ DependencyGraphProof
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Narrowing
QDP
                                                                                                                                                                                                                              ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, minus_nat(s(0), 0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), pos(s(x0)), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(s(x0))), pos(0))
F(true, pos(0), pos(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(0)), pos(0))
F(true, pos(0), neg(0), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), neg(0)), neg(s(y1)))
F(true, pos(0), pos(0), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), pos(0)), neg(s(y1)))
F(true, pos(0), neg(s(x0)), neg(s(y1))) → F(and(true, true), pos(0), plus_int(pos(s(0)), neg(s(x0))), neg(s(y1)))
F(true, pos(0), pos(s(x0)), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), pos(s(x0))), neg(s(y1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Narrowing
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ DependencyGraphProof
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Narrowing
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), minus_nat(0, x0), y2)
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(s(x0))), y2)
F(true, pos(0), y1, pos(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(0)), y2)
F(true, pos(0), pos(s(x0)), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(s(x0))) → F(and(greater_int(pos(0), y1), true), pos(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, pos(0), pos(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, pos(s(x0))) → F(and(greater_int(pos(0), y1), false), pos(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, pos(0), neg(s(x0)), y2) → F(and(true, greater_int(pos(0), y2)), pos(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, pos(0), y1, neg(0)) → F(and(greater_int(pos(0), y1), false), pos(0), y1, minus_nat(s(0), 0))
F(true, pos(0), neg(0), y2) → F(and(false, greater_int(pos(0), y2)), pos(0), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(0), neg(s(x0)), neg(s(y1))) → F(and(true, true), pos(0), plus_int(pos(s(0)), neg(s(x0))), neg(s(y1)))
F(true, pos(0), pos(0), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), pos(0)), neg(s(y1)))
F(true, pos(0), pos(s(x0)), neg(s(y1))) → F(and(false, true), pos(0), plus_int(pos(s(0)), pos(s(x0))), neg(s(y1)))
F(true, pos(0), pos(s(x0)), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(s(x0))), pos(0))
F(true, pos(0), pos(0), pos(0)) → F(and(false, false), pos(0), plus_int(pos(s(0)), pos(0)), pos(0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), neg(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, minus_nat(s(0), 0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, minus_nat(s(0), 0))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), s(x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, minus_nat(s(0), 0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), s(x1))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(s(0), s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, minus_nat(s(0), 0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), s(x1))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(s(0), s(x1)))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, plus_int(pos(s(0)), pos(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), 0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, minus_nat(s(0), 0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), s(x1))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(s(0), s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), 0)))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, minus_nat(s(0), 0)) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), s(x1))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(s(0), s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), 0)))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), s(x1)))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(s(0), s(x1)))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), 0)))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(s(0), s(x1))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), 0)))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(plus_nat(s(0), 0))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, 0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, 0))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, s(x1))))) at position [3,0,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, 0))))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(plus_nat(0, 0)))) at position [3,0,0] we obtained the following new rules [LPAR04]:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), minus_nat(0, x1), y2)
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/11\
\00/
·x3 +
/00\
\00/
·x4

POL(true) =
/1\
\1/

POL(neg(x1)) =
/00\
\10/
·x1 +
/1\
\0/

POL(s(x1)) =
/10\
\00/
·x1 +
/1\
\0/

POL(pos(x1)) =
/00\
\00/
·x1 +
/1\
\0/

POL(0) =
/0\
\0/

POL(and(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(greater_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(false) =
/0\
\1/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/10\
\01/
·x2

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/1\
\0/
+
/00\
\10/
·x2

POL(plus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\10/
·x2

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, 0) → pos(0)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(F(x1, x2, x3, x4)) = x4   
POL(and(x1, x2)) = 0   
POL(false) = 0   
POL(greater_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 1   
POL(neg(x1)) = 1   
POL(plus_int(x1, x2)) = x2   
POL(plus_nat(x1, x2)) = 1 + x2   
POL(pos(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, 0) → pos(0)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(0)))
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 1   
POL(F(x1, x2, x3, x4)) = x4   
POL(and(x1, x2)) = 0   
POL(false) = 0   
POL(greater_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 1   
POL(neg(x1)) = 1   
POL(plus_int(x1, x2)) = x1 + x2   
POL(plus_nat(x1, x2)) = x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_int(pos(x), neg(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 1   
POL(F(x1, x2, x3, x4)) = x3   
POL(and(x1, x2)) = 0   
POL(false) = 0   
POL(greater_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(neg(x1)) = x1   
POL(plus_int(x1, x2)) = x2   
POL(plus_nat(x1, x2)) = 1 + x2   
POL(pos(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, 0) → pos(0)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(s(x1))), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(0)), y2)
F(true, neg(s(x0)), pos(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), neg(0), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), pos(s(x1)), y2) → F(and(false, greater_int(neg(s(x0)), y2)), neg(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1, x2, x3, x4)) =
/01\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(true) =
/0\
\1/

POL(neg(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(s(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(pos(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(0) =
/0\
\0/

POL(and(x1, x2)) =
/00\
\01/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(greater_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/00\
\00/
·x2

POL(false) =
/0\
\0/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\1/
+
/00\
\00/
·x2

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/1\
\0/
+
/01\
\00/
·x2

POL(plus_nat(x1, x2)) =
/00\
\00/
·x1 +
/1\
\0/
+
/01\
\00/
·x2

The following usable rules [FROCOS05] were oriented:

greater_int(neg(0), neg(0)) → false
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(true, false) → false
and(false, true) → false
and(true, true) → true
greater_int(neg(s(x)), pos(s(y))) → false
and(false, false) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                                  ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), y1, minus_nat(0, x1))
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1, x2, x3, x4)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/01\
\10/
·x4

POL(true) =
/0\
\1/

POL(neg(x1)) =
/00\
\01/
·x1 +
/0\
\0/

POL(s(x1)) =
/00\
\01/
·x1 +
/0\
\1/

POL(pos(x1)) =
/00\
\00/
·x1 +
/0\
\0/

POL(0) =
/0\
\0/

POL(and(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(greater_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(false) =
/1\
\0/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\01/
·x2

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\01/
·x2

POL(plus_nat(x1, x2)) =
/00\
\10/
·x1 +
/1\
\1/
+
/01\
\10/
·x2

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, 0) → pos(0)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                                      ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, neg(s(x0)), y1, pos(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(s(x0)), y1, neg(0)) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, neg(s(x0)), y1, pos(s(x1))) → F(and(greater_int(neg(s(x0)), y1), false), neg(s(x0)), y1, pos(s(s(x1))))
The remaining pairs can at least be oriented weakly.

F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
Used ordering: Matrix interpretation [MATRO]:

POL(F(x1, x2, x3, x4)) =
/01\
\01/
·x1 +
/0\
\1/
+
/01\
\01/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(true) =
/0\
\1/

POL(neg(x1)) =
/00\
\00/
·x1 +
/0\
\1/

POL(s(x1)) =
/01\
\11/
·x1 +
/0\
\0/

POL(pos(x1)) =
/00\
\11/
·x1 +
/0\
\0/

POL(0) =
/0\
\0/

POL(and(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\01/
·x2

POL(greater_int(x1, x2)) =
/00\
\01/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(false) =
/0\
\0/

POL(plus_int(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(minus_nat(x1, x2)) =
/10\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(plus_nat(x1, x2)) =
/00\
\11/
·x1 +
/1\
\1/
+
/10\
\11/
·x2

The following usable rules [FROCOS05] were oriented:

greater_int(neg(0), neg(0)) → false
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(true, false) → false
and(false, true) → false
and(true, true) → true
greater_int(neg(s(x)), pos(s(y))) → false
and(false, false) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                                          ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                                                                              ↳ RemovalProof
                                                                                                                                                                                                                                                                              ↳ RemovalProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
Positions in right side of the pair: Pair: F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                                              ↳ RemovalProof
QDP
                                                                                                                                                                                                                                                                              ↳ RemovalProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, neg(s(x1)), x_removed) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(x_removed, y1), neg(s(x1)), x_removed)
F(true, neg(s(x0)), neg(s(x1)), y2, x_removed) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(x_removed, y2), x_removed)

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: F(true, neg(s(x0)), y1, neg(s(x1))) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
Positions in right side of the pair: Pair: F(true, neg(s(x0)), neg(s(x1)), y2) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                                                  ↳ QDPOrderProof
                                                                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                                                                          ↳ QDPOrderProof
                                                                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                                                                              ↳ RemovalProof
                                                                                                                                                                                                                                                                              ↳ RemovalProof
QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(s(x0)), y1, neg(s(x1)), x_removed) → F(and(greater_int(neg(s(x0)), y1), greater_int(neg(x0), neg(x1))), neg(s(x0)), plus_int(x_removed, y1), neg(s(x1)), x_removed)
F(true, neg(s(x0)), neg(s(x1)), y2, x_removed) → F(and(greater_int(neg(x0), neg(x1)), greater_int(neg(s(x0)), y2)), neg(s(x0)), neg(s(x1)), plus_int(x_removed, y2), x_removed)

The TRS R consists of the following rules:

greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), neg(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), neg(s(y))) → true
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1))))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, plus_int(pos(s(0)), pos(s(x1)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(plus_nat(s(0), s(x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), pos(0)))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(plus_nat(s(0), s(x1))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), pos(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(plus_nat(s(0), 0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(plus_nat(s(0), s(x1))))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(plus_nat(s(0), 0)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), 0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1))))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(plus_nat(s(0), s(x1))))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(plus_nat(s(0), 0)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), 0))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, plus_int(pos(s(0)), neg(s(x1)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(plus_nat(s(0), s(x1))))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(plus_nat(s(0), 0)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), 0))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), s(x1)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(plus_nat(s(0), s(x1)))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(plus_nat(s(0), 0)))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), 0))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), s(x1)))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(plus_nat(s(0), 0))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(s(plus_nat(0, 0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), plus_int(pos(s(0)), y1), pos(s(x1)))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), minus_nat(0, x1), y2)
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), pos(0))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(0))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(0)), y2)
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), plus_int(pos(s(0)), y1), neg(s(x1)))
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(s(x1))), y2)
F(true, pos(s(x0)), pos(s(x1)), y2) → F(and(greater_int(pos(x0), pos(x1)), greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), pos(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), pos(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(0), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(0), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), neg(s(x1)), y2) → F(and(true, greater_int(pos(s(x0)), y2)), pos(s(x0)), neg(s(x1)), plus_int(pos(s(0)), y2))
F(true, pos(s(x0)), y1, neg(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), 0))
F(true, pos(s(x0)), y1, neg(s(x1))) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, minus_nat(s(0), s(x1)))
F(true, pos(s(x0)), y1, pos(s(x1))) → F(and(greater_int(pos(s(x0)), y1), greater_int(pos(x0), pos(x1))), pos(s(x0)), y1, pos(s(plus_nat(0, s(x1)))))
F(true, pos(s(x0)), y1, pos(0)) → F(and(greater_int(pos(s(x0)), y1), true), pos(s(x0)), y1, pos(s(plus_nat(0, 0))))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(s(x)), neg(0)) → true
greater_int(pos(s(x)), neg(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
QDP
                                                                                                                                                                                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
QDP
                                                                                                                                                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(s(x0))))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(s(x0)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), s(x0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                              ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(0)))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), s(x0))))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), pos(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
QDP
                                                                                                                                                                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0))))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, plus_int(pos(s(0)), neg(s(x0)))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, minus_nat(s(0), s(x0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
QDP
                                                                                                                                                                                                                      ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0)))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, minus_nat(s(0), s(x0)))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, plus_int(pos(s(0)), neg(0))) at position [3] we obtained the following new rules [LPAR04]:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, minus_nat(s(0), 0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
QDP
                                                                                                                                                                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), s(x0))))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, minus_nat(s(0), s(x0)))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, minus_nat(s(0), 0))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), s(x0)))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(s(plus_nat(0, s(x0)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                                                                              ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, minus_nat(s(0), s(x0)))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, minus_nat(s(0), 0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(s(plus_nat(0, s(x0)))))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), neg(0)) at position [0] we obtained the following new rules [LPAR04]:

F(true, neg(0), neg(s(x0)), neg(0)) → F(and(true, false), neg(0), plus_int(pos(s(0)), neg(s(x0))), neg(0))
F(true, neg(0), neg(0), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), neg(0)), neg(0))
F(true, neg(0), pos(0), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), pos(0)), neg(0))
F(true, neg(0), pos(s(x0)), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), pos(s(x0))), neg(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Narrowing
QDP
                                                                                                                                                                                                                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, minus_nat(s(0), s(x0)))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, minus_nat(s(0), 0))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(s(plus_nat(0, s(x0)))))
F(true, neg(0), neg(s(x0)), neg(0)) → F(and(true, false), neg(0), plus_int(pos(s(0)), neg(s(x0))), neg(0))
F(true, neg(0), neg(0), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), neg(0)), neg(0))
F(true, neg(0), pos(0), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), pos(0)), neg(0))
F(true, neg(0), pos(s(x0)), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), pos(s(x0))), neg(0))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Rewriting
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Narrowing
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                                                                                  ↳ AND
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ UsableRulesProof
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ Rewriting
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Rewriting
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ Rewriting
                                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                                  ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(0))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), minus_nat(0, x0), y2)
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), plus_int(pos(s(0)), y1), pos(s(x0)))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), plus_int(pos(s(0)), y1), neg(s(x0)))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(0)), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(s(x0))), y2)
F(true, neg(0), pos(s(x0)), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(plus_nat(s(0), 0)))
F(true, neg(0), neg(s(x0)), y2) → F(and(true, greater_int(neg(0), y2)), neg(0), neg(s(x0)), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(s(x0))) → F(and(greater_int(neg(0), y1), true), neg(0), y1, minus_nat(s(0), s(x0)))
F(true, neg(0), neg(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), neg(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, neg(0)) → F(and(greater_int(neg(0), y1), false), neg(0), y1, minus_nat(s(0), 0))
F(true, neg(0), pos(0), y2) → F(and(false, greater_int(neg(0), y2)), neg(0), pos(0), plus_int(pos(s(0)), y2))
F(true, neg(0), y1, pos(s(x0))) → F(and(greater_int(neg(0), y1), false), neg(0), y1, pos(s(plus_nat(0, s(x0)))))
F(true, neg(0), pos(0), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), pos(0)), neg(0))
F(true, neg(0), pos(s(x0)), neg(0)) → F(and(false, false), neg(0), plus_int(pos(s(0)), pos(s(x0))), neg(0))

The TRS R consists of the following rules:

greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(0), neg(s(y))) → true
and(false, false) → false
and(true, false) → false
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, true) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.